

Section 25

Pulsed Plasma Thruster (PPT)

... Charles Zakrzwski NASA Goddard Space Flight Center ... Scott Benson

NASA Glenn Research Center

25 - 1 08/15-16/01

Introduction

Pulsed Plasma Thruster

Objectives

- Validate the ability of a new generation of PPT's to provide precision attitude control capability
 - PPT replaces pitch wheel/torquer bar
- Confirm benign interaction
 - Demonstrate imaging capability during PPT operation
- Confirm PPT performance parameters

PPT Team

- NASA/Glenn Research Center
 - Scott Benson: (216) 977-7085
- General Dynamics Space Propulsion Systems
 - Joe Cassady: (703) 271-7576
- NASA/Goddard Space Flight Center
 - Chuck Zakrzwski: (301) 286-3392

PPT Description (1 of 4)

PPT Description (2 of 4)

- Small, low power, selfcontained electromagnetic propulsion system
- Non-toxic solid propellant:
 Teflon
- High Isp (650-1350 s), very low
 I-bit (90-860 uN-s)
- Propellant ablated and ionized by capacitor discharge
- Plasma is accelerated by Lorentz force
- Multiple thrusters can be driven by a common capacitor

PPT Operation

PPT Description (3 of 4)

EO-1 PPT (100 W)

Mission Technology Forum Dawgstar PPT (10 W)

Characteristic	EO-1 (Ref. AIAA-99-2276)	Dawgstar (Ref. AIAA-00-3256)
Maximum Input Power	70 Watts (one thruster—EO-1 operations)—100 Watts design	13.1 Watts (two thrusters at once)
Thrusters/System	2	8
Total System Impulse	1850 N-sec (EO-1 propel. load) >15,000 N-sec (system life)	1125 N-sec
Impulse Bit	90-860 _μ N-sec, throttleable	56 _μ N-sec
Pulse Energy	8.5-56 Joules, throttleable	5 Joules
Maximum Thrust	860 uN (EO-1); 1.2 mN (design)	112 _u N
Specific Impulse	650-1350 sec	500 sec
Thrust to Power Ratio	12.3 _u N/Watt (System Input)	8.3 _u N/Watt (System)
Total Mass	4.9 kg (2 PPTs, a Power Processing Unit, and fuel)	3.8 kg (8 PPTs, a Power Processing Unit, and fuel)
Propellant	Teflon	Teflon
Propel. Mass (Design)	0.07 kg/thruster (as fueled)	0.030 kg/thruster

PPT Description (4 of 4)

◆ EO-1 PPT Technology Advancements

 Reduced dry mass from 6.5 to 4.8 kg through cap and electronics reductions [EO-1 PPT mass includes external mounting structure (AIAA 99-2276)]

EO-1 PPT made significant strides in reducing electronics mass.

EO-1 Electronics, 750 g (incl cables and connectors, but not base plate)

Photos to same scale

LES 8/9 Electronics, 1130 g (not incl housing shown)

PPT Validation (1 of 5)

- Flight Validation scheduled for October 2001
- PPT Flight unit underwent extensive proto-flight hardware validation/development path
 - (NASA TM-2000-210340 "Development of a PPT for the EO-1 Spacecraft")
 - <u>Functionality</u>: Demonstrate range of orbital operations and functionality of test support equipment
 - Performance: Demonstrate performance characteristics
 - Vibration: Acceptance level vibration testing to Delta II levels
 - Thermal Vacuum/Cycle: Demonstrate survival and operations across required temperature range
 - <u>EMI/EMC</u>: Measure characteristic conducted and radiated emissions and evaluate PPT susceptibility to EMI
 - <u>Life/Contamination</u>: Demonstrate thruster life capability through duration of minimum flight experiment. Evaluate plume contamination effects on spacecraft surfaces.
- Attitude control capability of PPT confirmed in high fidelity spacecraft simulations

PPT Validation (2 of 5)

Functionality

- Benchtop and vacuum testing
- Demonstrate range of planned orbital operations
 - Throttling through charge duration control (120 920 msec)

Performance

AIAA-99-2290 "Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster"

- Determine thrust and impulse bit across throttle range
 - Before and after life testing no change
- Evaluate off-axis impulse bit component
- Characterize shot-to-shot repeatability

PPT Validation (3 of 5)

Vibration

- Acceptance level vibration testing to Delta II levels
 - Random vibration to 14.1 grms on 3 axes

◆ Thermal Vacuum

Demonstrate survival and operations across
 required temperature range

- -32 to +42°C survival range
- -15 to +42°C operating range
- Characterized sensitivity in main capacitor charge rate to temperature
 - Factored into performance results
 - Function of charge duration throttling approach

PPT Validation (4 of 5)

Life/Contamination

- Demonstrate thruster life
 - Minimum experiment life (100,000 pulses/side)
- Evaluate plume contamination effects on spacecraft surfaces.
 - Spacecraft surface samples (X-band antenna surface ,radiator, MLI)

◆ EMI/EMC:

- Characterised conducted and radiated emissions
 - Consistent with previous electric propulsion devices
 - RE01, CE01 and CE07 results within spec
 - CE03 limits (conducted emissions) exceed by up to
 12 dB below 4 MHz waiver accepted
- RE02 broadband radiated emissions exceed levels below 100 MHz
 - AIAA 2001-3641 "Addressing EO-1 Spacecraft PPT EMI Concerns"
- Continuing PPT EMI evaluation at GRC

PPT Validation (5 of 5)

High Fidelity Simulation Results for nominal imaging orbit

Attitude Control Experiment

- PPT Replaces pitch momentum wheel
- Minimum impact to existing ACS architecture
- Same PID controller used
 - Computed pitch torque commands processed for PPT control
 - PID control gains adjusted
- Pitch wheel speed brought to zero
 - Pitch magnetic torquer turned off

Simulation Results

- During imaging mode pointing errors within 5 arcsec requirement
- Worst case roll, pitch, and yaw errors:52.1, 129.3, 14.2 arcsec
 - Caused by solar array wind/rewind
- Orbital average power 12.6 W

PPT Technology Transfer & Infusion

Near Term (DawgStar, StarLight)

Far Term (TPF, MAXIM)

Multi-Thruster System Architecture,

Long Life, Low Mass/Volume,

Integration Ease, Specific Impulse, Efficiency,

Thrust-to-Power, Impulse Bit Accuracy

Continued PPT Technology Development and Improvement

Technology Transfer & Infusion (Mission Applications)

Mission Technology Forum

Formation Flying

- Interferometry Missions (Starlight, TPF, Planet Imager)
 - Require 1 cm separation control between spacecraft
 - PPTs have been leading candidates for these missions due to high precision thrust pulses, high lsp

System Mass Comparison

- Earth Observing Mission (Techsat 21, Leonardo)
 - Air Force and NASA are studying ways to deploy constellations of small satellites in co-orbiting formations
 - Typically requires 1 mN 100 mN of thrust, with capability to generate 0.5 mN - 2 mN-s impulse bit
 - PPTs trade well because of small impulse bit, high lsp, and small volume

Precision Pointing (Maxium)

Fine attitude control for pointing optical instruments

Technology Transfer & Infusion (Mission Applications) Mission Technology Forum

Continuous disturbance reduction

- Drag free control (GRACE and GPS follow-ons)
 - Repeatable low thrust range of PPT use to cancel atmospheric drag forces
 - Maintains orbit, improves prediction accuracy
- Other (TDRSS type GEO missions)
 - PPTs can cancel disturbance forces to reduce size of attitude control system

- Low mass/volume/power ideally suited for microsats
- Simple to integrate, No chemical/pressure hazard
 - Well suited multiple S/C on a deplorer ship and university project

◆ Large Space Structures

Used as active control actuators

Lessons Learned

- ◆ PPTs can be implemented as attitude control actuators with minimal impact to existing attitude control subsystem architectures
- Increasing range of PPT thrust would expand the use of PPT as ACS actuators
 - On going PPT development efforts are addressing concern by looking at changes to components and changes in operation methods
- Radiated emission concerns must be addressed earlier in project timeline
 - Special test with PPT in bell jar while electrically mated to S/C to confirmed benign effect on S/C bus (without instruments).
 - Successful ambient testing with GSE performed with ALI integrated
 - Effort to conclusively quantify risk to instruments unit beyond program constraints at time issue was identified
 - Most desirable solution for EO-1 would be to test with high fidelity ALI engineering unit
- Continuing research into PPT EMI reduction leveraging EO-1 experience
 - Addressing: lower discharge energies, improved component characteristics, geometry effects, sparkplug characteristics

Summary / Conclusion

Benefits of PPT Technology

- Micro impulse capability for precision pointing/positioning
- Unique high lsp, low power attributes well suited to small spacecraft
- Eliminates distributed, toxic propellant systems
- Low mass / power / volume alternative for mission in which both conventional ACS and delta-V systems can be replaced.

Applications

- Formation flying/precision pointing (Starlight, SAR, TPF, Maxium)
- Propulsive attitude and drag free control (Future GRACE/GPS missons, GEO solar disturbances)
- Micro/small satellite propulsion (Dawgstar, Techsat 21)

◆ EO-1 Flight Validation

- EO-1 PPT experiment will validate the capability of a new generation of PPTs to perform spacecraft attitude control
- Ground validation tests indicate adequate PPT performance